
TestApe
Unit Testing for embedded software

------ OOO ----

++
,,, ++
(o_o) **
(_) **

** +
*+ + .
++ ()
oo () oo

oo

Using the TestApe unit testing tool
Release 791

Contents

1 TestApe 5
1.1 Theory of usage . 5
1.2 The author . 6
1.3 Terminology . 6
1.4 Typography . 7
1.5 Terms of use . 8

2 Using the TestApe library 9
2.1 Creating and executing a basic testcase . 9
2.2 testmain . 10
2.3 Generating the test executable . 10
2.4 Validating output . 12
2.5 Validating function calls . 13
2.6 Simulating return values . 14
2.7 Validating parameters to functions . 15
2.8 Simulating output from mock functions, part one 16
2.9 Input to mock functions . 16
2.10 Mocking without validating function calls . 17
2.11 Mocking c library . 18
2.12 Calling mocked functions from a mock . 19
2.13 Organizing tests . 20
2.14 Ranged tests with parameters . 21
2.15 Validating ranged tests with parameters . 23
2.16 Parameter sets . 24
2.17 Signal handling . 25
2.18 Adding and removing object �les from unit . 25

2

CONTENTS

2.19 Using the framework without the instrumenter 26

3 Using the TestApe instrumenter 27
3.1 The TestApe instrumenter commandline options 27
3.2 Using TestApe instrumenter with GCC . 28
3.3 Using TestApe instrumenter with Visual Studio 29
3.4 Troubleshooting . 29

4 Using the TestApe test executable 31
4.1 Commandline options . 31
4.2 Exit codes . 32
4.3 Memory analysis . 32
4.4 Coverage analysis . 32
4.5 Debugging test executable . 32
4.6 Log output and error messages . 33

5 Reference 35
5.1 ALLOW . 35
5.2 ALLOW_SIMULATE . 35
5.3 ALLOW_VALIDATE . 36
5.4 COMMENT . 36
5.5 EXECUTE . 37
5.6 EXPECT . 37
5.7 EXPECT_VALIDATE . 38
5.8 EXPECT_SIMULATE . 38
5.9 MOCK . 39
5.10 PARAMETER . 39
5.11 PARAMETER_RANGE . 40
5.12 PARAMETER_SET . 40
5.13 PARAMETER_VALUE . 41
5.14 SIMULATE . 41
5.15 SIMULATE_VALUE . 42
5.16 VALIDATE . 42
5.17 VALIDATE_FILE . 42

3

CONTENTS

5.18 VALIDATE_STRUCT . 43
5.19 VALIDATE_MEMORY . 43
5.20 VALIDATE_STRING . 44
5.21 Deprecated macros . 44

4

Chapter 1

TestApe

TestApe is a free unit-testing package that can be used to test embedded software written in C.
Like many other unit test frameworks, it can be used to make a function call into the unit and
test the return value. However, TestApe's ability to test what goes on inside these functions is
what make this framework di�erent.
In general, the output of a function becomes a less interesting test parameter as the abstraction
level of the function increases. For example, the output of a function implementing a state
machine is of little importance for test, compared to the behavior inside the function. TestApe
allows testing of the behavior inside functions as well as their output.
TestApe package comes with a instrumenter for code generated with GCC, CygWin GCC or
Microsoft compilers. It will run in both Windows and Linux operating systems. The instru-
menter generates default mocks in order to test and simulate the data �ow between the unit
that is tested and the mock function.

1.1 Theory of usage
In classic software development, a modest complicated software program is typically decom-
posed into several cooperating modules. The compiler interprets the source code for each
module and creates an object �le holding the compiled code. The linker assembles all the
object �les and creates the complete executable. If one or more, of these object �les were not
present, the linker could not assemble the software program and it would not be able to execute.
In TestApe terminology, an incomplete assembly of object �les is called a unit. The TestApe
instrumenter combines these units with the framework, the TestApe tests and with mocks for
the functions in missing object �les, in order to turn it all into a TestApe executable.
When running a TestApe executable the behavior of the unit is tested using the TestApe
framework and the result of the tests are reported as shown below

In stub execute

PASSED verify command
expected [000] 6c 69 6e 6b 20 40 74 65 'link @te'

5

1.2. THE AUTHOR

actual [000] 6c 69 6e 6b 20 40 74 65 'link @te'

PASSED verify file existence testape_prelink_args
expected testape_prelink_args
actual testape_prelink_args

PASSED verify file size testape_prelink_args
expected 52
actual 52

PASSED verify testape_prelink_args
expected [000] 6d 79 6f 62 6a 2e 6f 62 'myobj.ob'
actual [000] 6d 79 6f 62 6a 2e 6f 62 'myobj.ob'

PASSED verify ret_val
expected 0 (0)
actual 0

PASSED test instrument_testape_lib

The entire process can be automated and run repeatedly. A TestApe executable is typically
run, whenever one of the modules in the unit has changed. The test veri�es that the new
functionality behaves as expected ,or that the unchanged part of the unit is still working.

1.2 The author
Martin Steen Nielsen holds degrees in Electronic Engineering and Computer Science. He has
worked with unit testing of embedded software since 1999. Martin became hooked on automated
module testing, seeing how it made signi�cant improvements in quality and stability of his own
work.
To avoid the tedious work of writing stub functions, the author invented the TestApe instru-
menter, so that new unit test projects could be launched quickly. The principles in the TestApe
framework, as well as the freedom in structure it supports, is inspired by experience with unit
testing and test driven development during these years.

1.3 Terminology
• Unit

An incomplete collection of modules, e.g. source �les, object �les and/or library �les.
When combined these modules form the unit that is tested. The instrumenter will �ll in
the missing pieces in order to form a complete test executable.

• Test executable
The output of the instrumenter. The test executable will run the tests and report errors
found.

6

1.4. TYPOGRAPHY

• Test
The test is the basic test implementation by the test designer. It is composed of one single
C function, that will call the selected functions in the unit and validate the behavior.

• Testcase
It is common to group several tests to form a more complete test - for example, software
that implement some kind of state machine may require several tests to be executed,
before a scenario is covered.
It is a possibility for the test designer to form testcases by nesting tests.

• Testsuite
It is a possibility for the test designer to form testsuites by nesting testcases.

• Stub
A stub is a function that replaces non-existing functionality in the unit by providing an
alternative test implementation for the function it replaces.
The test developer can choose to implement a stub manually. Manually created stubs are
not dynamic - they remain in scope for all tests at all times.
If a stub is not created manualy, the framework will automatically create a default
TestApe mock.

• Mock
A mock is a function the replaces or extends existing functionallity by providing an
implementation for the function it mocks.
The mock implementation is de�ned by the test developer. The mock will typically verify
parameters and simulate a return value for the unit. In addition the mock function can
choose to call the function it is mocking.
Default mocks are automatically generated for those functions that are not part of the
unit. TestApe mocks dynamic scope. Each test de�ne which functions that are mocked
and which mock implementation they use for each test.

• Instrumenter
A tool provided in the package, that will create default mocks for those functions, that
are not present in the unit.

• Framework
The TestApe framework is a library wrapped in a collection of macros. The macros are
used when writing test.

1.4 Typography
The usage of the package is illustrated by text and examples. All sample code that is written
with test purpose appears framed and in italic.

7

1.5. TERMS OF USE

void test_addition(void)
{
int result;
result = calculate(3,7,'+');
}

Everything that can be typed literally in testcode like macros, parameters and other code
references appears in �xed type font e.g. test_addition()
The framework will generate log output. Samples of log output are shown framed and in black.

FAILED verify result
expected 10 (10)
actual -1

Commands that are to be given on a commandline is shown unframed in italic. Like it is
shown below.

testape gcc unit_a.c unit_d.c ad_test.c testape.a

1.5 Terms of use
It is the hope of the author, that you will �nd this package useful. Please observe the following
terms when using the package :

By downloading and/or using one of Martin Steen Nielsen's TestApe components
you are legally bound by the following: The TestApe components may be used for
personal or business but you may not put them on a diskette, CD, web site or any
other medium and o�er them for redistribution or resale. The TestApe components
are o�ered, "as is" without warranty of any kind, either expressed or implied. Martin
Steen Nielsen will not be liable for any damage or loss of data whatsoever due to
downloading or use of these components. In no event shall Martin Steen Nielsen
be liable for any damages including, but not limited to, direct, indirect, special,
incidental or consequential damages or other losses arising out of the use of or
inability to use the components and/or information from testape.com. Martin Steen
Nielsen reserves the right to change and/or modify these terms with no prior notice.
Understand this is a legally binding contract, and violation will have consequences
where this document may be used against you.

8

Chapter 2

Using the TestApe library

TestApe test �les are plain C modules. These are compiled and linked with the unit that is
tested, in order to generate the test executable. The tests uses the macros available from the
testape framework. These are de�ned in testape.h.

2.1 Creating and executing a basic testcase
A test project consists of a range of basic tests. These tests can be nested, run in loops, put
in structures in whatever way is appropriate for the test organization. There is no hard coded
arrays and/or global variables that limits how these can be organized. A TestApe test is made
of one plain C function that will setup expectations, call one or more functions in the unit, and
validate the result.
In the sample below the test test_addition will call the function calculate in the unit.

void test_addition(void)
{
int result;
result = calculate(3,7,'+');
}

The sample is executed using EXECUTE(test_addition) and this would produce the following
output in the log

Executing test test_addition
PASSED test test_addition

Even though there is no validation in this test, it will enable coverage analysis, debugging and
memory checking of the code in calculate.

9

2.2. TESTMAIN

2.2 testmain
All test projects must de�ne one test - the testmain test. This test will serve as an entry point
for the framework. The framework will launch testmain after initialization and analysis of the
commandline arguments.
In order to launch test_addition the following code is needed

void test_addition(void)
{
int result;
result = calculate(3,7,'+');
}

void testmain(void)
{
EXECUTE(test_addition);
}

See also Section 4 about exitcodes and command line parameters.

2.3 Generating the test executable
To generate the test executable, the following is needed : the code being tested, the test, and
the testape framework. These are combined to form the test executable using the instrumenter
together with the compiler or linker.
calc.c shown below will be used in the following examples. The calculator will perform a
simple addition or subtraction. It will do that calling invalid(), add() and subtract().
The calculator program is normaly assembled of calc.c, add.c, subtract.c, multiply.c and
divide.c, but calc.c is the only unit being tested in the following samples.

int validate(int a, int b) { return 1; }

int calculate(int operand1, int operand2, char operation)
{
if (invalid(operand1) || invalid(operand2))

return ERROR;

switch(operation)
{
case '+':
return add(operand1, operand2);

case '-':
return subtract(operand1, operand2);

case '*':
return multiply(a,b);

case '/':

10

2.3. GENERATING THE TEST EXECUTABLE

return divide(a,b);
}

return ERROR;
}

Sample1 is shown here, 1

#include "testape.h"

void test_addition(void)
{
int result;
result = calculate(3,7,'+');
}

void testmain(void)
{
EXECUTE(test_addition);
}

can be compiled and run in an CygWIN/GCC environment like it is shown below. Notice that
add.c, multiply.c, divide.c, and subtract.c are not compiled. Instead the instrumenter
is invoked in front of the compiler. The instrumenter will launch the compiler and generate
default mocks for the missing functions in the unit.

c:\>testape gcc calc.c sample1.c testape.a

TestApe instrumentation tool, release beta-Mar--7-2010-linux.
Unit testing for embedded software - http://testape.com

------ OOO ----

++
,,, ++

(o_o)**
(_)**

** +
*+ + .
++ ()
oo () oo

oo

Analyzing ...
Generating default mocks -> add subtract multiply divide

1The code examples shown, are given in order to illustrate the usage - they may be incomplete. The
installation contains a sample directory that contains full versions of the samples from this document. To run
this example on windows, select "Try examples" from menu and run 'nmake sample1'. In Linux run 'make
sample1' in '/usr/share/doc/testape/samples'.

11

2.4. VALIDATING OUTPUT

Generating hooks -> None

c:\>test_calculator
Executing test testmain

Executing test test_addition

PASSED test test_addition

PASSED test testmain

TestApe will also run with Visual Studio CL.EXE or with GCC in Linux. See more details
about supported environments in section 3.

2.4 Validating output

To improve the test, one or more validations can be added, as shown in sample2 below.1 The
VALIDATE macro that is used, will validate the data returned from calculate against the
expected value 10.

void test_addition(void)
{
int result;
result = calculate(3,7,'+');
VALIDATE(result, 10);
}

If the validation succeeds the following output are generated

Executing test testmain

Executing test test_addition

PASSED verify result
expected 10 (10)
actual 10

PASSED test test_addition

PASSED test testmain

If not, the failure is is reported in the log. In addition the test will be listed as failed in the
summary at the end of the log.

12

2.5. VALIDATING FUNCTION CALLS

FAILED verify result
expected 10 (10)
actual -1

The framework includes additional macros for validating strings, arrays, structs and �le con-
tents. Detailed description can be found in chapter 5 Readability of the log �le can be improved
by choosing proper test names and by using macros for values as shown below in sample31 If
possible, the framework will try to retain the symbolic values and use these in the log output.

#define EXPECTED_SUM 10
void test_addition(void)

{
VALIDATE(calculate(3,7,'+'), EXPECTED_SUM);
}

will change the log output to

Executing test testmain

Executing test test_addition

PASSED verify calculate(3,7,'+')
expected EXPECTED_SUM (10)
actual 10

PASSED test test_addition

PASSED test testmain

2.5 Validating function calls
The implementation of calculate depends upon the functions validate, add, divide,
multiply and subtract in order to implement the calculations. For a given test, there is
a certain order in which these are executed. This is tested using the macro EXPECT as it is
shown in sample4 below.1

void test_addition(void)
{
EXPECT(invalid);
EXPECT(invalid);
EXPECT(add);
calculate(3,7,'+');
}

13

2.6. SIMULATING RETURN VALUES

With the EXPECT macro the test developer can indicate to the framework, that this test expects
invalid() and add() function calls during calculate. The framework detects the function
calls made by calculate and generates the output shown below

Executing test test_addition

Expecting function call to invalid
Expecting function call to invalid
Expecting function call to add

PASSED verify function call to invalid
expected invalid
actual invalid

PASSED verify function call to invalid
expected invalid
actual invalid

PASSED verify function call to add
expected add
actual add

PASSED test test_addition

The calculate function do not see any di�erence compared to its normal environment.
If the actual and expected function call resolves to a function that is not present in the unit,
the framework will report that it is called and return 0 to the unit that is calling it.
If the expected function call resolves to a function that is present in the unit, the framework
will simply report that it is called and afterwards call the function.

2.6 Simulating return values
Zero is often an adequate value to return from mock functions. In addition - by the use of the
SIMULATE macro, any non-zero value can be returned to the unit.

void test_addition(void)
{
EXPECT (invalid);
SIMULATE(invalid, TRUE);
VALIDATE(calculate(3,7,'+'), -1);
}

As sample5 shows above1, the SIMULATE macro is used to indicate to the framework, that this
test expects invalid() function calls twice. The �rst call to invalid should return default 0

14

2.7. VALIDATING PARAMETERS TO FUNCTIONS

(FALSE) and the second should return TRUE. If the second invalid() function call is detected,
the framewrok will make the mock return the value TRUE to calculate.
If the actual and expected function call matches, and the expected function resolves to a function
that is present in the unit, the framework will not call that function, but instead return the
value given by the test.
If the actual and expected function call do not match and the expected function resolves to a
function that is not present in the unit, the framework will report an error that an unexpected
function call was detected.
If the actual and expected function call do not match and the actual function resolves to a
function that is present in the unit, the framework will not interfere. The unit will then simply
call that function.

2.7 Validating parameters to functions
As part of the function validation, it is also possible to validate the parameters passed from
the unit.

void test_addition(void)
{
EXPECT (invalid);
EXPECT (invalid);
EXPECT_VALIDATE (add, check_add);
VALIDATE(calculate(3,7,'+'), EXPECTED_SUM);
}

The EXPECT_VALIDATE macro shown in sample6 above1, instructs the framework to expect a
function call to add. check_add is a reference to a mock that will verify the arguments being
passed to add. This mock function must have the same prototype as the function it validates.
The sample function check_add shown below has the same prototype as the function add called
by calculate.

int check_add(int left_operand, int right_operand)
{
VALIDATE(left_operand,3);
VALIDATE(right_operand,7);
return 10;
}

The function validates that each of the parameters are as expected for this test. Other tests
might have other expectations to the parameters, so they will use another mock function. It is
possible to have many mock functions, each of which can be used to test parameters for add
in di�erent scenarios. The output from the mock function check_add will look something like
this

15

2.8. SIMULATING OUTPUT FROM MOCK FUNCTIONS, PART ONE

PASSED verify left_operand
expected 3 (3)
actual 3

PASSED right_operand
expected 7 (7)
actual 7

2.8 Simulating output from mock functions, part one
The mock function has the same prototype as the function is validates, so it is possible for it
to return a value, that the framework return to calculate.
The mock shown below will return EXPECTED_SUM, which the framework will return back to
calculate. Other tests may require a di�erent return value, so they will use another mock. It is
possible to have many mocks, each of which returns di�erent values for di�erent test scenarios.

int check_add(int left_operand, int right_operand)
{
VALIDATE(left_operand,3);
VALIDATE(right_operand,7);
return EXPECTED_SUM;
}

If the function mock is mocking a function that is present in the unit, it is possible, for the
mock function to call that function.
In sample7 below1, the function add is present in the unit

int check_add(int left_operand, int right_operand)
{
VALIDATE(left_operand,3);
VALIDATE(right_operand,7);
return add(left_operand, right_operand);
}

Calling the mocked function is a possibillity - it is not required.

2.9 Input to mock functions
As described in section 2.6 the test can give the return value by the use of the macro SIMULATE,
if the default value of zero used by EXPECT is not adequate.

16

2.10. MOCKING WITHOUT VALIDATING FUNCTION CALLS

There is also an equivalent EXPECT_SIMULATE macro, that is used by the test to indicate that
a mock function should be used to validate the parameters.
The simulate value given to EXPECT_SIMULATE can be read from within the mock function
using the macro SIMULATE_VALUE. This can be used to pass parameters between tests and
mock functions as shown in sample8 below1

void test_addition(void)
{
EXPECT (invalid);
EXPECT (invalid);
EXPECT_SIMULATE (add, check_add , EXPECTED_SUM);
VALIDATE(calculate(3,7,'+'), EXPECTED_SUM);
}

If the test is constructed as shown above, the value EXPECTED_SUM can be extracted and returned
from the mock like this:

int check_add(int left_operand, int right_operand)
{
VALIDATE(left_operand,3);
VALIDATE(right_operand,7);
return SIMULATE_VALUE;
}

The same thing can be achived by having several di�erent mocks each returning their own
unique value, but, by the use of SIMULATE_VALUE, the same mock can be shared between
several tests.

2.10 Mocking without validating function calls
Sometimes it is not of any interest for a test, wheither the unit makes a call to a particular
function or not. By the use of ALLOW macro, shown in sample9 below,1 a test can indicate to
the framework, that function calls to this function is valid at all times during the test.

void test_addition(void)
{
ALLOW (invalid);
EXPECT_SIMULATE (add, check_add , EXPECTED_SUM);
VALIDATE(calculate(3,7,'+'), EXPECTED_SUM);
}

17

2.11. MOCKING C LIBRARY

Functions that are present in the unit and not listed in a EXPECT, SIMULATE, EXPECT_VALIDATE
or EXPECT_VALIDATE is automatically ignored by the framework. In those cases the framework
will not interfere and it will simply transfer control to the function.
If the function given to ALLOW resolves to a function that is not present in the unit, the
framework will return 0 to the unit whenever the mocked function is called.
With the use of ALLOW_SIMULATE the default mock can be instructed to return any value to the
unit. sample10 shown below1 illustrates this, by making the default mock for invalid return
TRUE at all times during the test.

void test_addition(void)
{
ALLOW_SIMULATE (invalid, TRUE);
VALIDATE(calculate(3,7,'+'), ERROR);
}

It is also possible to replace the default mock entirely for the duration of the test. By the
use of ALLOW_VALIDATE as shown in sample11 below,1 the function invalid will be mocked
by function mock_invalid. The mock function must have the same function prototype is the
function is mocks.

int mock_invalid(int parameter)
{
return FALSE;
}

int check_add(int left_operand, int right_operand)
{
VALIDATE(left_operand,3);
VALIDATE(right_operand,7);
return SIMULATE_VALUE;
}

void test_addition(void)
{
ALLOW_VALIDATE (invalid, mock_invalid);
EXPECT_SIMULATE (add, check_add , EXPECTED_SUM);
VALIDATE(calculate(3,7,'+'), EXPECTED_SUM);
}

2.11 Mocking c library
Eventhough standard C library functions can be mocked, it is worth to notice that some of
these may in fact be macros disguised as functions. This depends on the library installed, but
some versions of stdlib may have this issue for feof, setjmp and longjmp.

18

2.12. CALLING MOCKED FUNCTIONS FROM A MOCK

The exit function is generally not mockable - typicaly the compiler will assume that exit
never returns to the caller. Therefore it will not generate normal stack cleanup code and the
mock functionality will not work correctly.
sample12 below,1 is an example on a test that mocks printf in order to make a general
validation of the format string.

void mock_printf(char *fmt, ...)
{
VALIDATE(fmt==0, FALSE);
}

void test_printf(void)
{
SIMULATE(invalid, TRUE);
ALLOW_VALIDATE(printf, mock_printf);
calculate(3,7,'+');
}

2.12 Calling mocked functions from a mock
Upon entering a mock function, the framework disables all mocking of the function being
mocked. It is therefore possible to execute the function being mocked from within the mock
function. Upon return from the mock, or if the mock executes another test, the mocking of
that function is enabled again. An example (sample13) is shown below.1

void mock_printf(char *fmt, ...)
{
va_list args;
static int count = 0;
printf("*** printf called %d times *** \n", count++);
va_start(args,fmt);
vprintf(fmt, args);
}

void test_printf(void)
{
SIMULATE(invalid, TRUE);
ALLOW_VALIDATE (printf, mock_printf);
calculate(3,7,'+');
}

If the mocked function is not present in the unit, calling it from a mock will simply call the
default mock for that function.

19

2.13. ORGANIZING TESTS

2.13 Organizing tests
When running the above tests, the framework validates that all the expected functions are
called in the order as de�ned by the test and that no unexpected function was called. The test
will validate if the parameters were correct and simulate the output as de�ned by the test. At
the very end, the framework will validate the data returned from the unit. This would look
something like this in the log

Executing test test_addition

Expecting function call to invalid
Expecting function call to invalid
Expecting function call to add

In stub invalid

PASSED verify function call to invalid
expected invalid
actual invalid

In stub invalid

PASSED verify function call to invalid
expected invalid
actual invalid

In stub add

PASSED verify left_operand
expected 3 (3)
actual 3

PASSED right_operand
expected 7 (7)
actual 7

PASSED verify calculate(3,7,'+')
expected EXPECTED_SUM (10)
actual 10

PASSED test test_addition

In order to test the entire module and not just one function several tests must be combined
- for example, software that operates in an event driven environment will typically implement
some kind of state machine. In those environments, several events are required to test the
unit and a complete test scenario may require several tests to be executed. TestApe post no
restrictions on how the tests are organized. In fact, they can be nested to allow for whatever
test organization that is appropriate for testing the unit. e.g. the nested test below would be
executed using EXECUTE(scenario_sunshine)

20

2.14. RANGED TESTS WITH PARAMETERS

void scenario_sunshine(void)
{
EXECUTE(test_receive_this_event_wait_for_that_event);
EXECUTE(test_receive_that_event_and_finish);
}

It is also common to group several tests to form testcases and testsuites. It is a possibility for
the test designer to form testcases by nesting tests and to form testsuites by nesting testcases.
This is illustrated in sample14 shown below.1

void test_mapping_minus(void)
{
EXPECT (invalid);
EXPECT (invalid);
EXPECT (subtract);
calculate(1,1,'-');
}

void test_mapping_plus(void)
{
EXPECT (invalid);
EXPECT (invalid);
EXPECT (add);
calculate(1,1,'+');
}

void testcase_operator_mapping(void)
{
EXECUTE(test_mapping_plus);
EXECUTE(test_mapping_minus);
}

void testsuite_calculator(void)
{
EXECUTE(testcase_operator_mapping);
}

void testmain(void)
{
EXECUTE(testsuite_calculator);
}

2.14 Ranged tests with parameters
A very useful feature of the TestApe framework, is its ability to execute the same test with
a given list of parameters, e.g. a range between 0 and 255, or a set of strings e.g. "", NULL,

21

2.14. RANGED TESTS WITH PARAMETERS

"SAMPLE" that is known to be of importance for the unit being tested. This also gives the posi-
bility to vary the test slightly, in order to achieve the �nal increase in coverage. Of course, this
can be done by copying existing tests; changing a parameter here and there and implementing
new mocks. However - it is much easier to use the possibility to execute a ranged test with
parameters using the macro PARAMETER, PARAMETER_RANGE, and PARAMETER_SET.
These macros will prepare one or more values for the next executing test. Suppose you want
to test myfunc using a bool input parameter with values true and false, then you would
prepare the test using PARAMETER(true); PARAMETER(false); and execute the test as using
EXECUTE(myfunc)
Some more examples are shown in the the code below. In the sample directory, sample15 has
a more complete working example.1

void interesting_integers(void)
{
PARAMETER(0);
PARAMETER(-1);
PARAMETER_RANGE(128,255);
PARAMETER("some input string");
PARAMETER("");
PARAMETER(NULL);
EXECUTE(interesting_parameters);
}

This would generate the following output

Executing test interesting_parameters (step 1 of 133 using value 0)
....
PASSED test interesting_parameters
Executing test interesting_parameters (step 2 of 133 using value -1)
....
PASSED test interesting_parameters

....

Executing test interesting_integers (step 130 of 133 using value 255)
....
PASSED test interesting_parameters
Executing test interesting_integers (step 131 of 133 using value "some input string")
....
PASSED test interesting_parameters
Executing test interesting_integers (step 132 of 133 using value "")
....
PASSED test interesting_parameters
Executing test interesting_integers (step 132 of 133 using value NULL)
....
PASSED test interesting_parameters

22

2.15. VALIDATING RANGED TESTS WITH PARAMETERS

When testing a value in a range from one to 10000, the same test is literally executed 10000
times. This can take some time and generate huge log�les. As an option, the amount of values
tested, and/or the output generated, can be limited from the command line when invoking the
test executable. See section 4

2.15 Validating ranged tests with parameters
Each time an input parameter is changed the test is executed one more time. The TestApe
will invoke the test until the list of values is exhausted. With the previous example in mind,
the macro PARAMETER_VALUE can be used to extract the values as shown in sample16 below1

void test_addition(void)
{
EXPECT (invalid);
EXPECT (invalid);
EXPECT (add);
VALIDATE(calculate(PARAMETER_VALUE,PARAMETER_VALUE,'+'), 2*PARAMETER_VALUE);
}

void testmain(void)
{
PARAMETER_RANGE(10,20);
EXECUTE(test_addition);
}

As the input is changed, most likely so too are the validations and the list of expected function
calls. This can also be implemented by the use of PARAMETER_VALUE. An example (sample17)
is shown below.1

void test_addition(void)
{
EXPECT (invalid);
SIMULATE (invalid, PARAMETER_VALUE);

if (!PARAMETER_VALUE)
EXPECT_VALIDATE (add, check_add);

if (!PARAMETER_VALUE)
VALIDATE(calculate(3,7,'+'), EXPECTED_SUM);

else
VALIDATE(calculate(3,7,'+'), ERROR);

}

void testmain(void)
{
PARAMETER(TRUE);
PARAMETER(FALSE);

23

2.16. PARAMETER SETS

EXECUTE(test_addition);
}

The value being tested can also be passed to one of the mocks, e.g. the function check_add
shown below

void test_addition(void)
{
EXPECT (invalid);
EXPECT (invalid);
EXPECT_SIMULATE (add, check_add , PARAMETER_VALUE);
VALIDATE(calculate(3,7,'+'), PARAMETER_VALUE);
}

The mock can pick up the value as described in 2.6 or it can just pick up the value by referenc-
ing PARAMETER_VALUE directly. PARAMETER_VALUE will remain in scope for the test and mock
functions throughout the duration of the test.

2.16 Parameter sets
It is possible to give parameter sets as input to test. This can be done like it is shown in
sample18 below1

typedef struct _mytest_t
{ int left; int right; int result; } mytest_t;

int check_add(int left_operand, int right_operand)
{
mytest_t *tmp = (mytest_t*)SIMULATE_VALUE;
VALIDATE(left_operand,tmp->left);
VALIDATE(right_operand,tmp->right);
return tmp->result;
}

void test_addition(void)
{
mytest_t *tmp = (mytest_t*)PARAMETER_VALUE;

EXPECT (invalid);
EXPECT (invalid);
EXPECT_SIMULATE (add, check_add , PARAMETER_VALUE);
VALIDATE(calculate(tmp->left,tmp->right,'+'), tmp->result);
}

void testmain(void)
{
mytest_t test_calc_add_paramters[] = {{1,1,2},{3,4,7},{6,6,12}};

24

2.17. SIGNAL HANDLING

mytest_t test5_5_10[] = {5,5,10};

PARAMETER_SET(test_calc_add_paramters);
PARAMETER (test5_5_10);
EXECUTE(test_addition);
}

2.17 Signal handling
TestApe framework will catch and report illegal memory access. If the unit attempts to access
memory at an illegal adresses, the framework will abort the test. The log output will contain
a message like this

Executing test testmain

Executing test test_division

Expecting function call to divide

PASSED verify function call to divide
expected divide
actual divide

FAILED (crashed with exception)

FAILED verify calculate(3,0,'/')
expected 0 (0)
actual 7153560

FAILED test test_division (2 errors)
test exception
Verify integer

FAILED test testmain (1 error)
Execution of test

and the test will fail. TestApe will try to resume test execution. sample19 in sample directory
contains a division-by-zero example.1

2.18 Adding and removing object �les from unit
In large software projects the availability of object �les may depend on the progress from other
groups. It is possible to write the tests, so that they are invariant to the presence of an object
�le. As soon as the interface has been agreed upon, TestApe will make it possible to write the

25

2.19. USING THE FRAMEWORK WITHOUT THE INSTRUMENTER

software using it. Later, when the implementation is ready, the object �le can be added, and
the same test can be reused to verify that the implementation in the object �le, is in line with
expectation. Imaging that add.c is a large and complex function that is not initially available
when developing calculator.c. The expected behavior of calculator.c can be tested like it
shown below.

void test_addition(void)
{
SIMULATE(add,10);
VALIDATE(calculate(3,7,'+'), 10);
}

When add.obj becomes available it can be added to the commandline

2.19 Using the framework without the instrumenter
The instrumenter will help assemble the test executable and it will �ll in missing functionality
from the object �les that are not present in the unit. If you try to link without the instrumenter
you will get unresolved externals. Normally the instrumenter will �ll in mock functions for these,
but without it you will have to do it manually. The framework allows you to write very simple
default mocks for these using the macro CREATE_MOCK. For example

CREATE_MOCK(add);
CREATE_MOC(invalid);

26

Chapter 3

Using the TestApe instrumenter

The TestApe instrumenter is designed to generate default mocks for those functions that cannot
be resolved by the linker. The generated mocks allows simulating and testing of data �owing
between the external functions and the unit being tested.
At the �nal link stage, the invocation of the linker is passed through the TestApe instrumenter.
If the instrumenter determines that the testape library are not used, the instrumenter will
simply invoke the linker in pass through mode. If the testape library is used, automatic mock
generation will be initiated and the TestApe logo will be displayed.

------ OOO ----

++
,,, ++
(o_o)**
(_)**

** +
*+ + .
++ ()
oo () oo

oo

The instrumenter will also check and notify about newer versions when these becomes available.
Supported linkers includes LINK.EXE (including when LINK.EXE is invoked though CL.EXE)
and ld (including when ld in invoked through g++ or gcc)

3.1 The TestApe instrumenter commandline options
The syntax and options that can be used when invoking the instrumenter is shown below.

testape [-o] ld [linker arguments] testape.a
testape [-o] gcc [compiler parameters] testape.a
testape [-o] LINK [linker arguments] testape.lib
testape [-o] CL [compiler parameters] testape.lib

27

3.2. USING TESTAPE INSTRUMENTER WITH GCC

The instrumentation is done in three passes; Pass 1 will execute compiler/linker and analyze
the amount of unresolved externals, Pass 2 will generate and compile instrumentation code,
and Pass 3 will put it all together.
The -o is used to troubleshoot problems. When present, the command lines for each pass is
shown, and the intermediate �les are kept.
The compiler parameters or linker arguments can be one or more parameters normaly
reconized by gcc/ld/LINK or CL.

3.2 Using TestApe instrumenter with GCC
The gcc/g++ needs access to interface �le and ld needs access to the library �le. In addition
certain system libraries are required. This is all taken care of by the package manager. To
install TestApe on a Debian based system run

dpkg -i testape_r556_i386.deb

On a Redhat based system run

rpm -i testape-r556-2.i386.rpm

The package manager will put the binaries in /usr/bin, /usr/include, /usr/lib and the
documentation and examples in /usr/share/doc/testape
If you want to do it manually, unpack the tar ball and put the instrumenter,interface and library
in the proper directories. Remember to link to testape.a from /usr/lib/libtestape.a if you
want to use -ltestape option.
The library and instrumenter will depend of the following libraries

libstdc++.so.6
libm.so.6
libgcc_s.so.1
libc.so.6

To use the instrumenter with the linux linker ld simply link with the testape library and invoke
the instrumenter in front of the �nal linker command as shown in the examples below

testape ld unit_a.o unit_d.o ad_test.o testape.a
testape ld unit_a.o unit_d.o ad_test.o /path/testape.a

or when the linker is used through gcc/g++

testape gcc unit_a.c unit_d.c ad_test.c testape.a
testape gcc unit_a.c unit_d.c ad_test.c -ltestape

28

3.3. USING TESTAPE INSTRUMENTER WITH VISUAL STUDIO

If the libray is used together with tests written in C++, or if the tests are compiled with g++,
the interface needs to be put inside a extern "C" declaration in order to be linkable with the
C++ program.
Eventhough the instrumenter cannot autogenerate mocks for code that is written in C++, it
is still possible to use the the framework to test the code. All mocks will have to be written
manually.
For further information on TestApe with C++ see the forum at http://testape.com.

3.3 Using TestApe instrumenter with Visual Studio
To use the instrumenter with the Visual Studio command line tools link.exe simply link with
the testape library and invoke the instrumenter in front of the �nal linker command as shown
in the examples below

testape.exe link.exe unit_a.obj unit_d.obj ad_test.obj testape.lib
testape.exe link.exe unit_a.obj unit_d.obj ad_test.obj \path\testape.lib

or when used through cl.exe

testape.exe cl.exe unit_a.c unit_d.c ad_test.c testape.lib
testape.exe cl.exe unit_a.c unit_d.c ad_test.c \path\testape.lib

TestApe test executable can be debugged using the Visual Studio debugging environment. The
following command lines is an example on how it can be done.

C:\testape\sample>cmd /k ""c:\Program Files\Microsoft Visual Studio 9.0\VC\vcvarsall.bat"" x86
Setting environment for using Microsoft Visual Studio 2008 x86 tools.
C:\testape\sample>testape cl sample1.c calc.c add.c testape.lib
C:\testape\sample>devenv /debugexe sample1.exe

3.4 Troubleshooting
The instrumenter has a -o commandline switch to help troubleshoot. When invoked in this
mode, the instrumenter will show command lines for each pass and keep the temporary �les.
Some typical problems are shown below.

• Creating mock for EXECUTE(and other TestApe macros)
Check that testape.h is included in the tests.

• Creating mock for getreentrnet
Check that you are linking with all required standard libraries. Try and remove testape
from the commandline and verify that you can compile the tests without the instrumenter
and that you do not see unexpected unresolved external symbols.

29

3.4. TROUBLESHOOTING

• Creating mock for _Z20testape_validate_intPcS_ii
Check that you have named the �les with the extension .c if these are c �les. Verify that
you are compiling using gcc, not g++. If you want to to use g++ in order to write the
tests in c++, the #include <testape.h> statement must be put inside a extern "C"
declaration.

• undefined reference to `testape_validate_int'
Check that you are linking with library (testape.a/testape.lib). The order of libraries
and tests given on commandline is important. Verify that the library is given later on
commandline than the tests using it.

30

Chapter 4

Using the TestApe test executable

The test executable can be run from commandline like any other programs generated by the
compiler.The framework will launch testmain using EXECUTE(testmain) after initialization
and analysis of the commandline arguments.

4.1 Commandline options
If no options are given, all tests are run and the log will contain no error and test identi�ers.
This default behavior can be changed by giving one or more of the following options :

testexe [-q | --quiet]
[-idt | --show-test-identifiers]
[-ide | --show-error-identifiers]
[-h | --help]

testexe [-i identifier | --ignore identifier]

testexe [identifier | -e identifier | --execute identifier]

The name of a test is used as identi�er on the commandline. 2 In addition each test is
numbered. These names or numbers can be used as identi�ers. Each argument that accept an
identi�er, also accepts a list of identi�ers and /or a range of identi�ers. Each identi�er in a list,
is seperated by ','. The start and stop values in a range is separated by '-'. If no start value
is given the �rst test is used as start value. If no stop value are given, the last test is used as
stop value. Some identi�er examples are shown below

test_load_my_app
test_load_my_app,scenario_sunshine_all_ints
scenario_sunshine_all_ints-
-scenario_sunshine_all_ints
test_load_my_app-scenario_sunshine_all_ints
1
1-10,4,124

2The usage of test names as identi�ers is not implemented yet.

31

4.2. EXIT CODES

4.2 Exit codes
If any errors were detected during execution of the tests in testmain, the framework will make
the test executable return a nonzero errorlevel or exit code.
The e�ect of the exit code varies depdendent on the context in which the test executable is
running. If the test executable is executed as part of a rule in a make�le , the exit code will
make the make�le terminate the rule.

4.3 Memory analysis
The test executable can be instrumented using standard memory analysis and coverage tools.
For example to execute with Valgrind memory analysis tools simply use valgrind testexe

4.4 Coverage analysis
Coverage data can be meassured using any 3rd party tool. E.g. to use purecoverage simply
invoke purecoverage instrumentaiton on the test executable.

testape cl unit_a.c unit_d.c ad_test.c testape.lib /out:testexe.exe
purecov testexe
testexe

gcov is the GCC coverage tool. This tool will automatically collect the data created by the test
executable, if the test executable it was compiled with coverage enabled. e.g.

testape gcc -ftest-coverage unit_a.c unit_d.c ad_test.c testape.a -o testexe
testexe
gcov -a uint_a.c uint_d.c

4.5 Debugging test executable
The test executable can be debugged like any other executable. Breakpoints can be set at any state-
ments in tests or in mock functions. In addition, it is also possible to break on speci�c errors.
When single stepping during debugging, note that EXECUTE is not always a single statement. When
test parameters are given, EXECUTE will actually call the test several times.
In order to break on errors, the breakpoint must be set in the error handler. This function is called
immediately before the statement having the error. Upon return from the error handler, the execution
will continue at the point where the error was detected.
In order to provide an error handler, the test must implement a function having the prede�ned name
testape_error_handler. The following shows an simple example

32

4.6. LOG OUTPUT AND ERROR MESSAGES

void testape_error_handler(void)
{
}

Conditional breakpoints can be set using on one of the prede�ned macros, testape_current_test,
testape_current_test_id, testape_current_error, or testape_current_error_id as shown below

void testape_error_handler(void)
{
printf("Error found in '%s', test number %d.\n",

testape_current_test, testape_current_test_id);
printf("This error is '%s', error number %d.\n",

testape_current_error, testape_current_error_id);
}

The error handler is intenteded for breakpoints only. Any use of the framework within the handler,
may have unexpected results. If no error handler is given in one of the test �les, the instrumenter will
provide an empty default.

4.6 Log output and error messages
During execution TestApe will log test progress to the screen. Every error detected and every test
execution is assigned a sequential identi�er. Error identi�ers are 3 digits shown pre�xed by e, e.g.
e001. Test identi�ers are shown pre�xed by t, e.g. t001.
These identi�ers can be used from the commandline to limit the amount of test to run.
The log output can be disabled from commandline, but as default it is enabled and each log statement
is pre�xed with the tag TestApe and optionally the current test and/or error identi�er as shown below.

testape: TestApe test executable
testape: Unit testing for embedded software - http://testape.com
testape:
testape: Test executable initializing
testape: -ide (error identifiers shown in log)
testape: -idt (test identifiers shown in log)
testape:

t000 e000 testape:
t000 e000 testape: Executing test testmain
t000 e000 testape:
t001 e000 testape:
t001 e000 testape: Executing test test_addition
t001 e000 testape:
t001 e000 testape:
t001 e000 testape: PASSED test test_addition

33

4.6. LOG OUTPUT AND ERROR MESSAGES

t000 e000 testape:
t000 e000 testape: PASSED test testmain

testape:
testape:
testape: Test exeutable terminating
testape: exitcode 0

When an error is detected TestApe will log information about the error. Generally a line for the actual
and expected value. Only 8 values will be shown on each line, so when validating �le content, strings,
structs and arrays, several lines may be shown. Di�erences between actual and expected are indicated
with the ^ sign as shown below.

testape: FAILED verify s
testape: expected [000] 4e 4f 54 20 'NOT '
testape: actual [000] 57 45 52 00 'WER.'
testape: ^^ ^^ ^^ ^^ ^^^^

34

Chapter 5

Reference

5.1 ALLOW
This macro will add a function to the list of functions, for which function calls are allowed and always
considered valid.

Syntax: ALLOW(function)

Parameters:
function A function used by the unit. The function can have any prototype.

Returns: -

All function calls to function are considered valid for the duration of the test. If function are not
present in unit the default mock will be called. The default mock will return 0.
ALLOW can be used together with EXPECT, EXPECT_VALIDATE or SIMULATE. If these are used
with same function in the same test (or in a test executed from the test), the validation of function
calls setup with EXPECT, EXPECT_VALIDATE or SIMULATE will take precedence until all of the
expected function calls has been validated. The macro is valid for the duration of the test. If the test
calls other tests, the macro will remain in scope also for these tests. ALLOW on function will override
any earlier allow macros on that function.

5.2 ALLOW_SIMULATE
This macro will add a function to the list of functions, for which function calls are allowed and always
considered valid. Whenever the function is called a �xed value are returned to the unit.

Syntax: ALLOW_SIMULATE(function, retval)

Parameters:
function A function used by the unit. The function can have any prototype.
retval The value that will be returned to the unit whenever function is called

35

5.3. ALLOW_VALIDATE

Returns: -

All function calls to function are considered valid and will return retval for the duration of the test.
ALLOW_SIMULATE can be used together with EXPECT, EXPECT_VALIDATE or SIMULATE. If
these are used with same function in the same test (or in a test executed from the test), the validation of
function calls setup with EXPECT, EXPECT_VALIDATE or SIMULATE will take precedence until
all of the expected function calls has been validated. The macro is valid for the duration of the test.
If the test calls other tests, the macro will remain in scope also for these tests. ALLOW_SIMULATE
on function will override any earlier allow macros on that function.

5.3 ALLOW_VALIDATE
This macro will add a function to the list of functions, for which function calls are allowed and always
considered valid. Function calls to this function are always replaced with function calls to a spec��ed
mock function.

Syntax: ALLOW_VALIDATE(function, mock)

Parameters:
function A function used by the unit. The function can have any prototype.
mock The function that will be called instead of function. The mock must have same prototype

as the function it mocks.

Returns: -

All function calls to function are considered valid, and they will be redirected to mock for the duration
of the test.
While mock is executing it is possible for the mock function to call function. Function calls made
from an active mock do not apply to any of ALLOW, ALLOW_SIMULATE, ALLOW_VALIDATE,
EXPECT, EXPECT_VALIDATE or SIMULATE. If function are not present in unit the default mock
will be called. The default mock will return 0.
ALLOW_VALIDATE can be used together with EXPECT, EXPECT_VALIDATE or SIMULATE. If
these are used with same function in the same test (or in a test executed from the test), the validation of
function calls, setup with these macros, will take precedence until all of the expected function calls has
been validated. ALLOW_VALIDATE is valid for the duration of the test. If the test calls other tests,
the macro will remain in scope also for these tests. ALLOW_SIMULATE on function will override
any earlier allow macros on that function.

5.4 COMMENT
This macro will generate output to the log �le.

Syntax: COMMENT(format, ...)

Parameters:

36

5.5. EXECUTE

format printf style comment format string.
... printf style list of arguments.

Returns: -

Will put a pre�xed comment in the log�le. The pre�x defaults to TESTAPE: but it can be omitted or
changed from commandline when the test executable is running.

5.5 EXECUTE
Executes a test.

Syntax: EXECUTE(test)

Parameters:
test A function implementing the test. test is a void function returning void.

Returns: -

test is a plain c function that implements the test. In its most simple form, this function will call some
functionality in the unit that needs to be tested. In addition, the return value can be validated and/or
a list of expected function calls can be setup.
The macro is used to start execution of a new test. It is used to execute the �rst testcase from the
main function. It can also be nested and used during a test, or be called from a mock - i.e. during
execution of the unit. Note that during execution of parameterized tests this macro might call test
several times.

5.6 EXPECT
This macro will add a function to the list of expected function calls.

Syntax: EXPECT(function)

Parameters:
function The function that is expected to be called during a test

Returns: -

A test will execute the unit by calling one of its functions. In return, the unit will run its code, which
in turn might call external functions outside the unit. For each test, a unique set of functions will be
called. The test must prepare a list of these to the framework, before executing the unit. The test
can use the macro EXPECT to instruct the framework that a function call to function is expected
during the test. If several functions are called, several EXPECT macros must be used before executing
the test. The order is important - e.g. the order of the EXPECT should correspond to the order, in
which, the unit will call the expected functions. If the framework detects a function call to a function

37

5.7. EXPECT_VALIDATE

that is not expected at that time, the test will fail. Each time an expected function is correctly called,
the framework will remove it from the list. The test will fail, if the list is not empty after the test
has completed execution. The unit is unaware, that it is actually calling a mock function. The mock
function will as default return zero, but several other options are available - See the description of
the EXPECT or SIMULATE macros. The macro is normally used before executing the unit, but if
desired, it can also be called from mocks - i.e. during execution of the unit.

5.7 EXPECT_VALIDATE
This macro will add a function to the list of expected function calls. If the function is called at the
expected time, the provided mock function will be called instead.

Syntax: EXPECT_VALIDATE(function, mock)

Parameters:
function The function that should be called
mock The mock that will validate parameters and determine return value

Returns: -

The EXPECT_VALIDATE macro is used to instruct the framework that a function call to function
is expected during the test. The unit is unaware, that it is actually calling a mock function. If the
unit calls the function at the right time, the framework will pass control to mock function. The mock
will typical implement validation of the parameters, but it can also execute tests.
In order for the mock to validate the parameters, it is important that the mock has the same function
prototype as the function it replaces. Upon return from the mock, the return value is passed back to
the unit.

5.8 EXPECT_SIMULATE
This macro will add a function to the list of expected function calls. If the function is called at the
expected time, the provided mock function will be called instead.

Syntax: EXPECT_SIMULATE(function, mock, retval)

Parameters:
function The function that should be called
mock The mock that will validate parameters and determine return value
retval The value that is proposed to be returned to the unit. The value is available to the mock

using the macro SIMULATE_VALUE

Returns: -

38

5.9. MOCK

The EXPECT_SIMULATE macro is used to instruct the framework that a function call to function
is expected during the test. The unit is unaware, that it is actually calling a mock function. If the
unit calls the function at the right time, the framework will pass control to the mock function. The
value retval can be read in the mock using the macro SIMULATE_VALUE. The mock will typical
implement validation of the parameters, perhaps guided by the value of \ retval, but it can also execute
tests.
In order for the mock to validate the parameters, it is important that the mock have the same function
prototype as the function it replaces.
The value retval can be read in the mock using the macro SIMULATE_VALUE, and may be used as
guidance on what to return. Upon return from the mock, the return value is passed back to the unit.

5.9 MOCK
Generates a default mock.

Syntax: MOCK(name)

Parameters:
name The name of the function that is mocked

Returns: -

The MOCK macro will generate a mock function called name. The mock function replaces and
simulates functions, that are called by the unit but not available during the test. It reports to the
framework, whenever a function call to name is detected. This allows the framework to validate, that
the parameters are correct, and that the function call occurs at the right time.
The prototype for a mock function can be a function prototype of any kind. The MOCK macro will
generate functions taking no parameters and returning nothing, e.g. void name(void). The function it
replaces will most likely have another prototype, but the di�erences are not important to the test.
The instrumenter will normally generate default mock functions for you, but this macro is available,
if you are not using the instrumenter.
This macro cannot be used together with earlier prototype declarations of name. If you experience
compilation problems due to this, there are two solutions - either use the correct prototype (for the
test it does not matter), or use the MOCK macro from within a �le, that does not include the real
function declaration.

5.10 PARAMETER
Adds a variant to the next executed test.

Syntax: PARAMETER(value)

Parameters:
value A test value for a variant of a test.

39

5.11. PARAMETER_RANGE

Returns: -

The same test can be executed with a range of values. This is useful when increased coverage only
require slight changes to a test. The variations can be added, to the next test, using this macro. Each
consequent call to PARAMETER will add another value to be tested during next test. The framework
will automatically repeat the next EXECUTE command for each value that has been added.
During execution the test can retrieve and implement the current variation using the macro PARAM-
ETER_VALUE .
Usually this macro is used during setup of the test, e.g. before the EXECUTE macro. However, it is
possible to add variant to the next test from everywhere.

5.11 PARAMETER_RANGE
Adds a range of variants to the next executed test.

Syntax: PARAMETER_RANGE(start, stop)

Parameters:
start First test value for a variant of a test.
stop Last test value for a variant of a test.

Returns: -

With the previous macro, it was possible to add a single variant value to a test. With the macro
PARAMETER_RANGE , the same thing can be done with a range of values. Each consequent call to
PARAMETER_RANGE will add a range, which will be tested during next test. The framework will
automatically repeat the next EXECUTE command for each value in the range.
During execution the test can retrieve and implement the current variation using the macro PARAM-
ETER_VALUE .
Usually this macro is used during setup of the test, e.g. before the EXECUTE macro. However, it is
possible to add variant to the next test from everywhere.

5.12 PARAMETER_SET
Adds a one or more sets containing values for the next test.

Syntax: PARAMETER_SET(arr)

Parameters:
arr Array holding one or more sets

Returns: -

40

5.13. PARAMETER_VALUE

It is possible to vary the test by giving more than one value at a time. To do this, use the macro
PARAMETER_SET. This will add one or more set of values. This macro can be used many times while
preparing the test. Each consequent call to PARAMETER_SET will add one or more set of values, and
each of those sets will in turn be tested during next test. The test will implement the variant using the
macro PARAMETER_VALUE. The individual members of the set can be accessed from the test, by casting
PARAMETER_VALUE to a pointer to one of the sets, e.g. ((set_type*)PARAMETER_VALUE)->set_member.
Usually this macro is used during setup of the test, e.g. before the EXECUTE macro. However, it is
possible to add sets to next test from everywhere.

5.13 PARAMETER_VALUE
If the same test are executed with a range or a list, this value represents the variant currently executing.

Syntax: PARAMETER_VALUE

Parameters: -

Returns: The value assigned to the currently executing test variant.

All tests can be executed more than once and the tests can be varied slightly between each run. For
example, one test could be setup to execute 100 times using the value from 0 to 99. Another test could
be setup to execute with variants `""`, `"string"` and `NULL`.
The macro PARAMETER_VALUE will in turn hold each of these values. The test can read this
macro, setup the list of expected function calls (as well as their simulated values), and stimulate the
unit according to this value.
The macro is normally used during the test, but if desired, it can also be called from mocks - i.e.
during execution of the unit.

5.14 SIMULATE
This macro will add a function to the list of expected function calls. If the function is called at the
expected time, the framework will return the provided value to the unit.

Syntax: SIMULATE(function, retval)

Parameters:
function The function that should be called
retval The value that will be returned to the unit

Returns: -

The SIMULATE macro is used to instruct the framework that a function call to function is expected
during the test. The unit is unaware, that it is actually calling a mock function. If the unit calls the
function at the right time, the framework will use the value retval and return it back to the unit. If
the framework detects a function call to a function that is not expected at that time, the test will fail.

41

5.15. SIMULATE_VALUE

Each time an expected function is correctly called, the framework will remove it from the list. The
test will fail, if the list is not empty after the test has completed execution.
The macro is normally used before executing the unit, but if desired, it can also be called from mocks
- i.e. during execution of the unit.

5.15 SIMULATE_VALUE
The return value proposed to the mock by the test.

Syntax: SIMULATE_VALUE

Parameters: -

Returns: The simulation value propose to the mock by the currently executing test.

The SIMULATE_VALUE holds the value assigned to the mock function by the currently executing
test. The test uses the macro EXPECT_SIMULATE to assign this value. The value can be read from
anywhere, but it is unde�ned, unless it is read from within a mock. If the mock are called in a mock,
that was setup using the EXPECT_VALIDATE macro, the macro SIMULATE_VALUE will be zero.
The value of this macro is unde�ned, unless it is called within a mock.

5.16 VALIDATE
Validates a variable against a reference value.

Syntax: VALIDATE(actual, expected)

Parameters:
actual The variable that will be checked
expected The reference value

Returns: -

This macro is used to validate a single value. The macro can be used within tests or mocks. Parameter
actual must be a variable. Parameter expected can be a variable or a constant. The symbolic names
of actual and expected are shown in the log. Proper chosen names for these can improve readability a
lot.

5.17 VALIDATE_FILE
Validates the existence and contents of a �le against a reference �le.

Syntax: VALIDATE_FILE(actual, expected)

42

5.18. VALIDATE_STRUCT

Parameters:
actual The �lename that will be checked
expected String containing the expected �le contents

Returns: -

If the unit is supposed to generate a �le during the test, you can use the VALIDATE_FILE macro to
validate the existence and contents of this �le. The framework will verify the existence of a �le name
actual . If the right �le is found, its contents are validated against the string expected . Use '
n' in string expected to insert linefeeds. These will be translated the same way as
n in the �le generated by the unit.
This macro is not intended to be used with binary �les. In order to validate contents of binary �les, a
validate function, that validates the content in the �le byte for byte, must be written.

5.18 VALIDATE_STRUCT
Validates the contents of struct against a reference struct.

Syntax: VALIDATE_STRUCT(actual, expected)

Parameters:
actual The struct data that will be checked
expected The reference struct data

Returns: -

With this macro, more data can be validated. The framework will check that the two structs are of
identical size and that their content are identical. The function also check the padding bytes. You
must use memset, before assigning values to the structs, in order to control the values of padding bytes.

5.19 VALIDATE_MEMORY
Validates a given chunk of memory against the given reference data.

Syntax: VALIDATE_MEMORY(actual, expected, size)

Parameters:
actual A pointer to memory that will be checked
expected A pointer to memory containing reference data
size Size of memory block

Returns: -

To validate memory contents this macro can be used. Parameter actual and expected must be variables.
The symbolic names of actual and expected are shown in the log. Proper chosen names for these can
improve readability a lot. The framework will compare the content 8 byte at a time. For each failed
8-byte block, the framework will display both the expected and actual 8-byte block in the log �le.
Exceptions are cought and reported, in case some of the memory are out of bounds.

43

5.20. VALIDATE_STRING

5.20 VALIDATE_STRING
Validates the contents of a string against a reference string.

Syntax: VALIDATE_STRING(actual, expected)

Parameters:
actual The string data that will be checked
expected The reference string

Returns: -

To validate a zero terminated string, this macro can be used. If the strings have di�erent lengths,
the test will fail. Parameter actual must be a variable. Parameter expected can be a variable or a
constant. The symbolic names of actual and expected are shown in the log. Proper chosen names for
these can improve readability a lot. The framework will compare the content 8 byte at a time. For
each failed 8-byte block, the framework will display both the expected and actual 8-byte block in the
log �le. Exceptions are caught and reported, in case some of the memory access is not allowed.

5.21 Deprecated macros

STUB This macro now replaced by MOCK. Parameters and functionality are the same.

EXPECT_AND_VALIDATE This macro now replaced by EXPECT_VALIDATE. Parameters and func-
tionality are the same.

EXECUTE_ADD This macro now replaced by PARAMETER. Parameters and functionality are the
same.

EXECUTE_ADD_RANGE This macro now replaced by PARAMETER_RANGE. Parameters and function-
ality are the same.

EXECUTE_ADD_SET This macro now replaced by PARAMETER_SET. Parameters and functionality
are the same.

EXECUTE_VALUE This macro now replaced by PARAMETER_VALUE. Parameters and functionality
are the same.

44

